
JoramMQ, a distributed MQTT broker for the
Internet of Things

White paper and performance evaluation

v1.2

September 2014
mqtt.jorammq.com

www.scalagent.com

1

1 Overview
Message Queue Telemetry Transport (MQTT) is an open Machine-to-Machine (M2M) protocol, that
has been invented in 1999, and that is in the process of undergoing standardisation at OASIS1.
MQTT is a lightweight event and message oriented protocol allowing devices to asynchronously
and efficiently communicate across constrained networks to remote systems. MQTT is now
becoming one of the standard protocols for the Internet of Things (IoT).

MQTT allows to collect data from remote devices and more specifically from devices at the edges
of the network, and push these data into systems in a data centre, for example a Big Data
processing system based on Apache Hadoop.

MQTT also allows to publish data and alerts to systems like smartphones, tablets and laptops,
enabling users to easily and efficiently monitor the data.

Figure 1 represents the architecture of an IoT application, collecting data from many devices,
processing and storing these data, and notifying the final users with alerts and reports. The
collected data can be directly published in real-time to the final users. Commands are triggered by
the final users, archived in the data store and transmitted to the devices.

In the IoT application represented above, every device, data processing system and monitoring
interface (e.g. smartphone) is potentially an MQTT client that produces and consumes telemetry
data. Control commands are also sent as MQTT messages like any other data types. Bi-directional
messaging is a requirement addressed by MQTT to uniformly handle both telemetry and
commands.

1 https://www.oasis-open.org/news/announcements/60-day-public-review-for-mqtt-version-3-1-1-cos01-ends-
september-4th

2

Figure 1: IoT application

Internet

Data processing and
storage

Final users Devices, sensors and
actuators

Data
collect

Alerts and
reports

Actions Control
commands

Pushed
Data (real-time)

Processed
Data

The MQTT protocol relies on a message broker according to the hub and spoke model of Message
Oriented Middleware (MOM). As shown by figure 2, every MQTT client, data processing application
or device, producer or consumer, needs to connect to a central broker before communicating with
other MQTT clients. The broker accepts published messages and delivers them to the interested
consumers according to a Publish/Subscribe interaction pattern.

The broker model has advantages and drawbacks. This document gives some reasons why the
broker model is particularly well-suited for IoT applications and how JoramMQ2 provides the
capabilities of MQTT while addressing the issues raised by the broker model.

In particular JoramMQ makes the broker scale with the number of connected devices by
distributing JoramMQ servers on many hosts located in different networks close to the devices.

2 The JoramMQ offering by ScalAgent is built on top of the JORAM open-source product, a Message Oriented
Middleware (MOM) that provides the JMS API. JoramMQ also provides the AMQP protocol (v0.9 and v1.0) and
the MQTT protocol (v3.1).

3

Figure 2: Hub and spoke communication

MQTT Broker

App

Device

App Device

Device

Device
Publish

Subscribe

Subscribe

Publish

Publish

Subscribe

Figure 3 illustrates the capability of JoramMQ to distribute the MQTT broker close to the devices,
concentrate the telemetry data, and scale with the number of devices. JoramMQ servers topology
is not limited to a hierarchy, i.e. a tree-like topology. However in the context of IoT, JoramMQ
servers are mapped to the hierarchical structure of a system made of subsystems and devices.
Applications can be connected at any level of the hierarchy. Servers are connected to each other
through an efficient and reliable protocol that transmits messages in batches without increasing the
transmission latency3.

This document is organised as follows:

Section 2 gives the advantages and drawbacks of the broker model regarding the
Publish/Subscribe interaction pattern;

Section 3 explains how the message broker provided by JoramMQ scales with the number of
MQTT clients;

Section 4 presents an MQTT performance test bench.

Sections 5, 6, and 7 describe different test scenarios and give JoramMQ performance results.

3 Instead of waiting for a predefined number of messages to be sent or a predefined time interval to elapse, JoramMQ
gathers all the messages that are ready to be sent at a given time in one batch and pushes the batch to the network.

4

Figure 3: Distributed broker

JoramMQ
App

Device

JoramMQ

Device

App

MQTT

MQTT

Message batches

2 Publish/Suscribe and the broker model
MQTT is based on a Publish/Subscribe interaction pattern. A message is published once on a
given topic, i.e. subject of interest, and every consumer that registered to this topic receives a copy
of the message.

Figure 4 illustrates the Publish/Subscribe pattern with a publisher pushing a message containing
the text “hello” to a topic having 3 subscribers. Every subscriber receives a copy of the message.

MQTT clients interact with a central broker, also called server, either by subscribing to topics, or
publishing messages to topics. The broker matches every published message to the subscriptions.
If there is no match, then the message is discarded. If there is one or more matches, then the
message is delivered to each matching subscriber.

The broker model is often opposed to a brokerless approach, also called peer-to-peer architecture,
where every application directly communicates with each other. It is interesting to compare both
approaches especially regarding the Publish/Subscribe interaction pattern.

5

TopicPublisher

Subscriber

Subscriber

Subscriber

Message
« hello »

Message
« hello »

Message
« hello »

Message
« hello »

Figure 4: Publish/Subscribe interaction pattern

TopicPublisher

Subscriber

Subscriber

Subscriber

Message
« hello »

Message
« hello »

Message
« hello »

Message
« hello »

2.1 Benefits of the broker model

The broker model has the following advantages over the brokerless approach.

Space decoupling
Applications using Publish/Subscribe do not need to know the location of other applications. The
only address an application needs to know is the network address of the broker. The broker then
routes the messages to the right applications based on the data semantic, e.g. the MQTT topic,
rather than on physical topology, e.g. the IP address.

Space decoupling is a real need for dynamic system environments where the physical address of a
device or an application may be unknown, unreachable, or changing. This is particularly useful for
pushing the telemetry data up to the consumers whose addresses are not known by the devices.
This is also useful for sending commands to a target device, as the physical address of the device
is usually not reachable outside the network of the device.

Another benefit of space decoupling is to enable many consumers to dynamically subscribe to
some data without affecting the producers of these data. An IoT application needs to make
available high volumes of data in ways that may not have been originally anticipated. Decoupling
the knowledge of the meaningful information (e.g. the telemetry parameters and the commands)
from the knowledge of the physical topology is a simple and efficient way to monitor and control
many devices located in many different networks.

Time decoupling
Publishers and subscribers do not have to be timely coupled. The publisher application can push
messages to the broker and terminate. The messages will be available for the subscriber
application any time later.

The unreliability of the network edges, the distributed nature of IoT applications and the
heterogeneity of the connected devices and applications (e.g. slow consumers) make time
decoupling a fundamental and mandatory property of the communication in an IoT application.

Reliability
The broker model brings communication reliability to the client applications. Message delivery can
be guaranteed without coupling the publisher application to the subscriber application by persisting
the messages to disk4. IoT applications need a simple and robust solution like the broker model in
order to guarantee that no data is lost5.

4 JoramMQ optimizes the reliable delivery performance thanks to efficient persistence mechanisms and message
batching.

5 An MQTT broker provides two reliable QoS levels called “at least once” and “exactly once”.

6

2.2 Drawbacks

The broker model also has the following drawbacks compared to the brokerless approach.

Higher message transmission latency
As presented in section 2.1, a broker brings time decoupling between a message producer and a
consumer. Therefore, a broker increases the transmission latency of a message, especially if
message persistence is required.

However, time-decoupling should not be sacrificed in the attempt to reduce latency well beyond the
point that it matters in an IoT application.

JoramMQ has been designed to reduce the message transmission latency as much as possible in
timely decoupled interactions.

Higher network bandwidth consumed
The broker model requires a “two hops” communication, from publisher to broker and broker to
consumer, leading to a bigger amount of network bandwidth than with the brokerless approach.

This drawback is not fully correct in the Publish/Subscribe interaction pattern, because data are
published once and consumed many times. So the “two hops” overhead is strongly reduced by the
number of times the data are consumed. If the published data are consumed N times then the
broker approach produces N+1 messages, whereas the brokerless approach produces N
messages. The gain provided by the brokerless approach is lowered by the number of times the
data are consumed.

Moreover the most constrained communication link is the connection to a device because of the
low bandwidth and also the constrained capabilities of the device. A message broker allows to
address these constraints and optimize the communication with the device.

Multicast is often presented as a solution to reduce the bandwidth usage. However all the
subscribers generally do not listen to the same data. Therefore, even with a multicast approach, a
broker (or gateway) is needed at the end to match the publications to the subscriptions and deliver
the data to the matching subscribers, potentially located in a different network.

Centralised architecture
As all the messages of a system are passed through the central broker, it becomes the bottleneck
of the whole system.

In order to avoid this issue, JoramMQ distributes the broker in multiple servers, potentially
deployed in different local networks. The next section of this document explains how a distributed
MQTT broker can be deployed with JoramMQ.

7

3 JoramMQ distributed broker

3.1 Overview

A typical IoT application where the MQTT protocol could be used is the monitoring and control of a
system containing many devices collecting telemetry parameters from sensors and transmitting
commands to actuators. Such a system is usually represented as a hierarchy of sub-systems, the
highest level being the system and the lowest level being the sensors (represented by parameters)
and the actuators (represented by commands).

Figure 5 gives an example of topic hierarchy.

The published data can be easily mapped to an MQTT topic structure. For example, the name of
the topic used by Device0 in SubSystem0 to publish the telemetry parameter Param0 would be:

System/SubSystem0/Device0/Param0

Commands are also mapped to MQTT topics. For example, the command Cmd0 provided by
Device0 in SubSystem0 is mapped to the following topic:

System/SubSystem0/Device0/Cmd0

An MQTT topic is just a name, hierarchically structured. A topic has no particular physical location
in the network. However, the subscribers need to create subscription contexts somewhere and
published messages need to be routed to these contexts.

JoramMQ manages the subscription contexts and the published messages routing by combining
three broker topologies:

1. centralised broker

2. clustered broker

3. distributed broker

8

Figure 5: Topic hierarchy example

System

SubSystem0

Param0

Device0

Param1

Device1

SubSystem1

Device0

Cmd0 Cmd1

Param0 Param0

Cmd0

3.2 Centralised broker

A centralised broker is made of a single server. Every MQTT client needs to connect to this server.

A subscription context is the root of a local subscription tree containing one node per subscription
topic. The subscription tree is dynamically created according to the MQTT subscriptions. When a
client subscribes to a given topic, the broker dynamically creates a subscription node for this topic.

A subscription context can be explicitly created for the top level topic, called “System” in figure 5.
However this creation is not mandatory as a default subscription context is created in every
JoramMQ server.

Figure 6 represents a subscription context that is dynamically populated with different subscription
nodes according to the MQTT subscriptions.

Two kinds of subscription nodes are distinguished. The root node (blue background) is statically
created with the subscription context. The other nodes (green background) are dynamically
created as the subscriptions are made by the MQTT clients.

Published messages whose topic name starts with “System” are delivered to the subscription
context “System”. Then the references of the subscribers are obtained by applying the MQTT topic
matching rules at each level of the subscription tree.

9

Figure 6: Centralised broker

S0

System

SubSystem0

Param0

Device0

#

+

Param1

Topic Static subscription node

Topic Dynamic subscription node

Subscriber

…/SubSystem0/Device0/Param0
…/SubSystem0/Device0/#
…/SubSystem0/+/Param1

Publisher

…/SubSystem0/Device0/Param1

MQTT

3.3 Clustered broker

A clustered broker is made of a group of servers. Each server of the cluster knows the
subscriptions made in this server and in the other servers of the cluster. Every subscription is
replicated in all the servers of the cluster. A published message is forwarded6 to every server that
owns subscriptions to the topic of the message. The goal is to balance the subscription load in
terms of the broker CPU and the network bandwidth used by the subscribers.

Every MQTT client needs to connect to one server of the cluster. The MQTT client sessions are not
replicated. Therefore, a given MQTT client, once connected, cannot switch from a server to
another, except if the MQTT session is configured to be cleaned after a disconnect.

Figure 7 illustrates how the subscription nodes are replicated among a cluster of two servers S0
and S1 according to the MQTT subscriptions. A subscription context is created in every server at
the topic level that needs to be clustered, for example “System”. Then the subscription nodes are
dynamically created by the MQTT subscription commands. The subscribers can connect to any
server of the cluster.

6 The QoS level of the forwarded message is applied when the message is transmitted from one server to another
server of the cluster. In case of server failure, no message published at QoS level 1 or 2 can be lost and the “exactly
once” property of QoS 2 is ensured.

10

Figure 7: Clustered broker

S1S0

System

SubSystem0

Device0

#

+

Param0

Subscriber Subscriber

…/SubSystem0/Device0/#
…/SubSystem0/+/Param0

Publisher

…/SubSystem0/Device1/Param0

Publisher

…/SubSystem0/Device0/Param1

System

SubSystem0

Device0

#

+

Param0

MQTT MQTT

Cluster

Replicated
subscriptions

Cluster

3.4 Distributed broker

The goal of a distributed broker is to scale with the number of MQTT clients using sub-topics in the
topic hierarchy, especially if these clients are distributed, like for example devices at the edges of
the network. Each device could be represented by a dedicated topic. The device would publish
data to this topic and subscribe to commands coming from this topic.

A distributed broker is made of a hierarchy of subscription contexts distributed in several servers.
In this subscription context hierarchy, each context has a unique parent (except the root) and
several children (except the leaves of the tree). Published messages are transmitted upward and
downward the tree of subscription contexts:

• upward as a child context systematically forwards the published messages to its parent;

• downward as a parent context transmits the published messages to the related children
contexts.

The upward publishing is typically used by devices to push data up to the data processing and
storage systems. In this way, the server used by the data processing is not overwhelmed by all the
connections of the devices. The server used by a device gathers the messages and efficiently
transmits them as batches in a single server-to-server connection.

The downward publishing can be used for example by final users to send commands to a device
connected to a remote server.

Figure 8 shows how the subscription context “System/SubSystem0” can be located in a remote
server (S1) close to the devices (e.g. same local network), allowing these devices to publish data
and subscribe to commands. The remote subscription context acts as a concentrator gathering the
MQTT messages published by the local publishers and pushing them to the higher level contexts.
The MQTT messages are efficiently transmitted between servers thanks to a message batching
protocol that does not increase the transmission latency.

11

Figure 8: Distributed broker

S0

System

SubSystem0

Param0

Device0

#

+

Param1

 S1

Parent

SubSystem0

Cmd0

Device0

UPWARD
PUBLISH

DOWNWARD
PUBLISH

Subscriber

Publisher

Publisher

Subscriber

…/SubSystem0/Device0/Param0 …/SubSystem0/Device0/Cmd1

Cmd1

…/SubSystem0/Device0/Cmd1…/SubSystem0/Device0/#
…/SubSystem0/+/Param1

MQTT

MQTT

Child

3.5 Clustered and distributed broker

As explained in section 3.4, a distributed broker topology is structured as a hierarchy of servers,
which may lead to a bottleneck at the level of the root server if it is not able to handle the message
traffic. In this case, the distributed broker topology should be mixed with the clustered broker
topology.

Figure 9 illustrates a mixed topology including two clustered servers S0 and S1, and two
distributed servers S2 and S3 deployed close to multiple devices to monitor and control.

At the bottom, S2 and S3 aim at scaling with the number of devices and also at improving the
connectivity at the edges of the network. The messages going through the root topic “System” are
statically load-balanced across servers S0 and S1. Subsystem0 is connected to S0 and
Subsystem1 is connected to S1.

At the top, the applications can connect either to S0 or S1, and subscribe or publish messages to
the topic hierarchy below “System”. If an application, e.g. a data store, subscribes to the whole
message flow going through the topic “System” then the servers S0 and S1 have to be able to
deliver such a message throughput.

If the message throughput is too high, then the root topic “System” should be partitioned in several
topics created in different servers. It should be noticed that the delivery of constant streaming of
high volumes of data to a single client is not a normal use case for MQTT. Another delivery
mechanism such as JMS (Java Message Service) or the protocol AMQP should be used instead.
JoramMQ allows clients to connect to the broker by using different protocols such as AMQP,
MQTT, and JMS/Joram. Such heterogeneous clients can then interoperate thanks to the common
interaction pattern “Publish/Subscribe” provided by each protocol.

12

Figure 9: Clustered and distributed broker

S0

System

SubSystem0

S2

SubSystem0

SubSystem1

Device

S1

System

SubSystem0 SubSystem1

S3

SubSystem1

Device

Clustered
broker

Distributed
broker

MQTT

MQTT

AMQP

MQTT

Monitored devices

Applications

MQTT

Parent ParentCluster

JMS

Child Child

Replicated
subscriptions

4 MQTT performance test bench

4.1 Overview

The goal of the test bench is to evaluate the scalability of an MQTT broker with the number of
clients, either publishers or subscribers. The test bench allows to check that in a given context
(QoS level, message throughput per client), the broker scales with the number of clients.

Three test scenarios are provided by this test bench. They are described in terms of the number of
publishers and subscribers (few or multiple), the number of topics per subscription and the number
of subscribers per topic.

Scenario name Publishers Subscribers Topics per
subscription

Subscribers per
topic

Multi-publisher Multiple Few All 1
Multi-subscriber Few Multiple 1 1
Multi-subscription Few Multiple Multiple Multiple

The message payload size is fixed and set to 64 bytes.

QoS is tested by assigning the same QoS level to publishers and subscribers.

QoS levels 1 and 2 are only tested with durable subscriptions, i.e. the clean session flag is false.

The tests check that there is no message loss, even at QoS level 0.

JoramMQ provides two ways to deliver messages at QoS 0. The first way consists in directly
delivering the messages without queuing them before. In case of overflow, messages are dropped.
The second way requires to queue messages at QoS 0. In case of overflow, messages are
swapped to disk. The first way (not queued) is more efficient than the second one (queued). The
first way is tested by the scenarios multi-publisher and multi-subscriber. The second way is tested
by the multi-subscription scenario.

QoS level 1 requires that a Publish message is acknowledged after it has been physically persisted
to storage. So the message needs to be persisted and a sync to disk needs to be performed before
the acknowledgement can be returned to the publisher. QoS level 2 has the same requirement
regarding acknowledgements PUBREC, PUBREL and PUBCOMP.

The following broker topologies are tested: centralised broker, clustered broker, distributed broker.

The results of the tests are the throughput of the messages that are delivered to the subscribers,
called the “delivered throughput”7, and the CPU consumed by the MQTT broker.

7 As the tests always reach a steady state, the “delivered throughput” is the throughput of the messages that go
through the broker, i.e. that are pushed on the publisher side and delivered on the subscriber side. The delivered
throughput is equal to the throughput of the messages that are pushed in the broker.

13

Four machines are used with the same configuration listed in the table below.

Java version 7
OS CentOS Linux 6.0

Processor Intel Core 2 Duo CPU E8400 3.00GHz

RAM 4 GB

Disk SATA 7200 RPM

14

4.2 Centralised broker testing

The test environment used with a centralised broker is represented by figure 10. The broker is
launched as a single server on a single machine. Clients are launched in several processes
producing and consuming messages through a dedicated topic hierarchy. Topic hierarchies are not
shared between processes. Each process produces and consumes messages using its own topic
hierarchy. The scalability of the broker with the number of clients is tested by incrementally
increasing the number of processes.

Three machines are required by the centralised broker testing: one for the broker and two for the
clients.

15

Figure 10: Centralised broker testing

Client machine

Broker machine

Client machine

ServerProcess
Test process

Topic hierarchy
Publisher
Publisher

Publisher
Subscriber

2 client
machines

1 to 6 test
processes

4000 MQTT
clients

In the multi-publisher and multi-subscriber scenarios, clients are added in batches of 4000 running
in a new process (JVM). A limit of 6 processes per client machine, each process starting 4000
clients, allows to reach a maximum of 48.000 clients. The minimum number of clients is obtained
with two client machines, each running one process. Therefore the minimum number of clients is
8000.

On the broker side, the maximum number of clients whose connections can be accepted depends
on several limits:

• the maximum number of file descriptors, as one file descriptor is created per socket; this
size can be easily increased at the OS level;

• the size of the TCP receiving and sending buffers;

• the amount of memory required by the broker to handle an MQTT client; JoramMQ does
not need much memory to handle a client so this is not a limiting factor for the tests.

A centralised broker can accept more than 48.000 connections. However the global message
throughput that a centralised broker can accept and deliver is limited. It is approximately constant
with the number of connections. As a consequence, the message throughput per connection
decreases with the number of connections. In the context of the tests, in order to reach interesting
message throughputs per connection, the maximum number of connections with a centralised
broker is limited to 48.000. The tests with clustered and distributed brokers are limited to 96.000
connections (see sections 4.3 and 4.4).

The publishers send messages at a steady rate. The tests do not try to reach the maximum
message throughput. The goal is to show how the broker scales with the number of clients, each
client producing or consuming at a fixed rate.

QoS levels 0 and 1 are tested at a nominal rate equal to 0,1 message per second (msg/s) per
client, either publisher or subscriber. This rate makes sense for IoT applications where data are
produced (e.g. telemetry) or consumed (e.g. commands) at a low frequency which may even be
lower than 0,1 msg/s.

At QoS levels 0 and 1 two higher rates are tested depending on the scenario:

• Multi-publisher: 1 msg/s at QoS 0 and 0,25 msg/s at QoS 1

• Multi-subscriber: 0,6 msg/s at QoS 0 and 0,15 msg/s at QoS 1

The multi-subscriber scenario requires smaller rates than the multi-publisher scenario because
delivering messages to multiple subscribers is more costly than accepting messages from multiple
publishers.

At QoS 2, the nominal rate is above the maximum rate allowed with 48.000 clients. A smaller rate
is chosen equal to 0,07 msg/s.

In the multi-publisher scenario, all the published message flows converge to the same endpoint on
the consumer side, e.g. a data centre that receives all the collected telemetry data. In the multi-
subscriber scenario, all the message flows are initiated from a unique endpoint on the producer
side, e.g. a control centre that initiates commands.

16

4.3 Clustered broker testing

A cluster of two servers S0 and S1 is deployed and a replicated subscription context is created for
each topic hierarchy.

The message rates are the same as with the centralised broker.

The number of MQTT clients is doubled. Clients are added in batches of 8000 running in a new
process (JVM). This is twice the size of the batches used in the centralised broker testing (4000).
The number of test processes goes from 1 to 6. Therefore, with two client machines, the maximum
number of clients is 96.000.

Clients are assigned to a server in a round-robin way.

Four machines are required by the clustered broker testing: two for the broker and two for the
clients.

Figure 11 represents how the clients are load-balanced across the clustered servers S0 and S1.
The different client machines, test processes and topic hierarchies are not represented but they
are the same as in figure 10 in section 4.2.

17

Figure 11: Clustered broker testing

Broker machine 1

Server S1

Broker machine 0

Client machine

Server S0

Test process

Publisher

Publisher

Replicated
root topic

Publisher

Subscriber

Cluster8000 MQTT
clients

2 client
machines

1 to 6 test
processes Replicated

root topic

4.4 Distributed broker testing

The distributed broker topology requires to distribute the subscription contexts, also called “topics”
and “subtopics” hereafter. Two servers are deployed: S0 and S1. The root topic is created either on
S0 or S1. Subtopics are distributed across S0 and S1.

Depending on the test scenario, the root topic either gathers the messages received from the
subtopics (e.g. telemetry data) or routes messages to the subtopics (e.g. command messages).

In a real deployment, the distributed servers S0 and S1 would be deployed close to the remote
MQTT clients (e.g. devices). Servers S0 and S1 would act as data concentrators. The root topic
would be located in a third server.

Figure 12 represents how multiple publishers are load-balanced across S0 and S1. The multi-
publisher scenario is presented in section 5.

In the same way, multiple subscribers can also be connected to S0 and S1. The multi-subscriber
scenario is presented in section 6.

18

Figure 12: Distributed broker testing, multi-publisher scenario

Broker machine 1

Server S1

Broker machine 0

Client machine

Server S0

Test process

Publisher

Subtopics

Publisher

Subscriber

Subtopics

Root topic

Parent

8.000 MQTT
publishers

2 client
machines

1 to 6 test
processes

5 Multi-publisher scenario

5.1 Overview

This scenario simulates a large number of devices, for example smart meters, publishing telemetry
data to a central system. The devices are the publishers and the central system is the subscriber8.

Devices are structured as a 3-level tree. The top level represents the system, for example an
electrical distribution circuit. The level below is called “subsystem”. In the metering use case, a
subsystem would be the access point in the neighbourhood that enables the meters to reach
Internet and publish data to the electricity company. An example of access point is an antenna
mounted on a utility pole. The bottom level is the device.

The 3-level tree is mapped to MQTT topics. A topic level is added below the device to represent
the telemetry parameters, for example the power consumption (kWh).

The test scenario defines a fixed size topic partition made of:

• 1 root topic “System”

• 40 topics “Subsystem”

• 100 topics “Device” per subsystem

• 10 topics “Parameter” per device

Therefore, in the metering use case, a topic partition represents an electrical distribution circuit with
4000 meters, each meter publishing 10 telemetry parameters.

8 The delivery of constant streaming of high volumes of data to a single client is not a normal use case for MQTT.
Another delivery mechanism such as JMS or AMQP should be used. However the test avoids the dependence on
some other mechanisms or protocols. Moreover, messages received by the subscribers are immediately dropped so
there is no need for a load balancing mechanism. Only the cost of the message delivery itself could be balanced
across several clients. JoramMQ could deliver the messages using the JMS 2.0 feature called “shared subscription”
allowing to load-balance a subscription across several connections.

19

5.2 Centralised broker

Figure 13 shows how the multi-publisher scenario is tested with a centralised broker. There is only
one subscriber per topic partition. This subscriber listens to all the topics of the partition by
subscribing to “System/#”.

One publisher is created for every topic “Device”. Each publisher sends messages to the topics
“Parameter” below the topic “Device”. In every partition, 4000 publishers send messages to 40.000
topics “Parameter” at a steady rate.

20

Figure 13: Multi-publisher, centralised broker

Subscriber

MQTT

MQTT

Multiple
publishers

System/#

 System

System/Subsystem/Device/Parameter

Data store

QoS 0
Partition configuration

Produced message
rate (msg/s)

Publisher count Throughput per
publisher (msg/s)

Expected delivered
throughput (msg/s)

400 4000 0,1 400
4000 4000 1 4000

0,1 msg/s per publisher

1 msg/s per publisher

21

Figure 14: QoS 0 multi-publisher, centralised broker, 0,1 msg/s per publisher

Figure 15: QoS 0, multi-publisher, centralised broker, 1 msg/s per publisher

8000 16000 24000 32000 40000 48000
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU (% max = 100)

Publishers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

8000 16000 24000 32000 40000 48000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU (% max = 100)

Publishers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

QoS 1 and clean session False
Partition configuration

Produced message
rate (msg/s)

Publisher count Throughput per
publisher (msg/s)

Expected delivered
throughput (msg/s)

400 4000 0,1 400
1000 4000 0,25 1000

0,1 msg/s per publisher

0,25 msg/s per publisher

22

Figure 16: QoS 1 multi-publisher, centralised broker, 0,1 msg/s per publisher

8000 16000 24000 32000 40000 48000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU (% max = 100)

Publishers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

Figure 17: QoS 1, multi-publisher, centralised broker, 0,25 msg/s per publisher

8000 16000 24000 32000 40000 48000
0

2000

4000

6000

8000

10000

12000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU (% max = 100)

Publishers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
PU

 (%
)

QoS 2 and clean session False
Partition configuration

Message rate (msg/s) Publisher count Throughput per
publisher (msg/s)

Expected delivered
throughput (msg/s)

280 4000 0,07 280

0,07 msg/s per publisher

23

Figure 18: QoS 2 multi-publisher, centralised broker, 0,07 msg/s per publisher

8000 16000 24000 32000 40000 48000
0

500

1000

1500

2000

2500

3000

3500

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU (% max = 100)

Publishers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
PU

 (%
)

5.3 Clustered broker

The multi-publisher scenario is tested with a clustered broker composed of two servers S0 and S1
as illustrated by figure 19. Publishers (8000 per partition) and subscribers (one per partition) are
equally load-balanced across the two servers S0 and S1. Figure 19 only shows one subscriber
connected to S0.

The subscriptions are replicated on both servers S0 and S1. If a publisher connected to S1 sends
a message to a topic having a subscriber connected to S0, then the message is forwarded to S0.

24

Figure 19: Multi-publisher, clustered broker

MQTT

MQTT

System

MQTT

MQTT

System

Subscriber

Multiple
publishers

Forward

S0 S1

System/#

System/Subsystem/Device/Parameter

Multiple
publishers

Data store

Replicated
subscriptions

QoS 0
Partition configuration

Produced message
rate (msg/s)

Publisher count Throughput per
publisher (msg/s)

Expected delivered
throughput (msg/s)

800 8000 0,1 800
8000 8000 1 8000

0,1 msg/s per publisher

1 msg/s per publisher

25

Figure 21: QoS 0, multi-publisher, clustered broker, 1 msg/s per publisher

Figure 20: QoS 0, multi-publisher, clustered broker, 0,1 msg/s per publisher

16000 32000 48000 64000 80000 96000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Publishers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
PU

 (%
)

16000 32000 48000 64000 80000 96000
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Publishers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

QoS 1 and clean session False
Partition configuration

Produced message
rate (msg/s)

Publisher count Throughput per
publisher (msg/s)

Expected delivered
throughput (msg/s)

800 8000 0,1 800
2000 8000 0,25 2000

0,1 msg/s per publisher

0,25 msg/s per publisher

26

Figure 22: QoS 1, multi-publisher, clustered broker, 0,1 msg/s per partition

Figure 23: QoS 1, multi-publisher, clustered broker, 0,25 msg/s per partition

16000 32000 48000 64000 80000 96000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Publishers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

16000 32000 48000 64000 80000 96000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Publishers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

QoS 2 and clean session False
Partition configuration

Produced message
rate (msg/s)

Publisher count Throughput per
publisher (msg/s)

Expected delivered
throughput (msg/s)

560 8000 0,07 560

0,07 msg/s per publisher

27

Figure 24: QoS 2, multi-publisher, clustered broker, 0,07 msg/s per publisher

16000 32000 48000 64000 80000 96000
0

1000

2000

3000

4000

5000

6000

7000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Publishers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

5.4 Distributed broker

The multi-publisher scenario is tested with a distributed broker composed of two servers S0 and S1
as illustrated by figure 25. Publishers (8000 per partition) and subscribers (one per partition) are
equally load-balanced across the two servers S0 and S1. Figure 25 only shows one root topic
“System” and one subscriber connected to S0.

28

Figure 25: Multi-publisher, distributed broker

MQTT

MQTT

Subsystem0

System

Subscriber

MQTT

Multiple
publishers

S0 S1

Subsystem1

Multiple
publishers

System/Subsystem0/
Device/Parameter

System/#

System/Subsystem1/
Device/Parameter

Data store

MQTT

QoS 0
Partition configuration

Produced message
rate (msg/s)

Publisher count Throughput per
publisher (msg/s)

Expected delivered
throughput (msg/s)

800 8000 0,1 800
8000 8000 1 8000

0,1 msg/s per publisher

1 msg/s per publisher

29

Figure 26: QoS 0, multi-publisher, distributed broker, 0,1 msg/s per publisher

Figure 27: QoS 0, multi-publisher, distributed broker, 1 msg/s per publisher

16000 32000 48000 64000 80000 96000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Publishers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

16000 32000 48000 64000 80000 96000
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Publishers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
PU

 (%
)

QoS 1 and clean session False
Partition configuration

Produced message
rate (msg/s)

Publisher count Throughput per
publisher (msg/s)

Expected delivered
throughput (msg/s)

800 8000 0,1 800
2000 8000 0,25 2000

0,1 msg/s per publisher

0,25 msg/s per publisher

30

Figure 28: QoS 1, multi-publisher, distributed broker, 0,1 msg/s per publisher

Figure 29: QoS 1, multi-publisher, distributed broker, 0,25 msg/s per publisher

16000 32000 48000 64000 80000 96000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Publishers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
PU

 (%
)

16000 32000 48000 64000 80000 96000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU (% max = 100)

Publishers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
PU

 (%
)

QoS 2 and clean session False
Partition configuration

Produced message
rate (msg/s)

Publisher count Throughput per
publisher (msg/s)

Expected delivered
throughput (msg/s)

560 8000 0,07 560

0,07 msg/s per publisher

31

Figure 30: QoS 2, multi-publisher, distributed broker, 0,07 msg/s per publisher

16000 32000 48000 64000 80000 96000
0

1000

2000

3000

4000

5000

6000

7000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Publishers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

5.5 Conclusion

The scenario called “multi-publisher” simulates a large number of devices, for example smart
meters, publishing telemetry data to a central system. The devices are the publishers and the
central system is the subscriber. Using a single server and constrained physical resources (2
cores, 4 GB RAM and SATA disk) JoramMQ can scale to 48.000 publishers, each publisher
producing:

• 1 message per second at QoS 0

• 0,25 message per second at QoS 1

• 0,07 message per second at QoS 2

With a clustered broker topology including two servers, JoramMQ scales to twice the number of
publishers, i.e. 96.000, producing messages at the same rates as above.

The distributed broker topology approximately gives the same results as the clustered topology.

32

6 Multi-subscriber scenario

6.1 Overview

This scenario simulates a large number of devices, for example smart meters, controlled by a
central system. The meters are the subscribers and the central system is the publisher.

Smart meters provide two way communications, allowing commands to be sent towards the
devices, for example a remote ON/OFF switch, or a request/response operation to retrieve the
value of a parameter. This test scenario only simulates the command (the request), not the
potential response. The command response would be notified as a telemetry parameter, for
example a status update indicating that the switch is ON.

Topics are partitioned in several hierarchies in the same way as in the multi-publisher scenario
described in section 5. A partition represents a circuit of 4000 devices providing a control interface.

The test scenario defines a fixed size topic partition made of:

• 1 root topic “System”

• 40 topics “Subsystem”

• 100 topics “Device” per subsystem

• 1 topic “Command” per device

33

6.2 Centralised broker

Figure 31 shows how the multi-subscriber scenario is tested with a centralised broker. There is
only one publisher per topic partition. This publisher sends messages to all the topics of the
partition at a steady rate.

One subscriber is created for every topic “Device”. Each subscriber receives messages from the
topic “Command” below the topic “Device”. In every partition, 4000 subscribers receive messages
from 4000 topics “Command” at a steady rate.

34

Figure 31: Multi-subscriber, centralised broker

Publisher

MQTT

MQTT

Multiple
Subscribers

System/Subsystem/Device/Command

 System

System/Subsystem/Device/#

QoS 0
Partition configuration

Message rate (msg/s) Command topic
count

Throughput per topic
(msg/s)

Expected delivered
throughput per

subscriber (msg/s)
400 4000 0,1 0,1

2400 4000 0,6 0,6

0,1 msg/s per subscriber

0,6 msg/s per subscriber

35

Figure 32: QoS 0, multi-subscriber, centralised broker, 0,1 msg/s per subscriber

Figure 33: QoS 0, multi-subscriber, centralised broker, 0,6 msg/s per subscriber

8000 16000 24000 32000 40000 48000
0

5000

10000

15000

20000

25000

30000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

8000 16000 24000 32000 40000 48000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU (% max = 100)

Subscribers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

QoS 1 and clean session False
Partition configuration

Message rate (msg/s) Command topic
count

Throughput per topic
(msg/s)

Expected delivered
throughput per

subscriber (msg/s)
400 4000 0,1 0,1
600 4000 0,15 0,15

0,1 msg/s per subscriber

0,15 msg/s per subscriber

36

Figure 34: QoS 1, multi-subscriber, centralised broker, 0,1 msg/s per subscriber

8000 16000 24000 32000 40000 48000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

Figure 35: QoS 1, multi-subscriber, centralised broker, 0,15 msg/s per subscriber

8000 16000 24000 32000 40000 48000
0

1000

2000

3000

4000

5000

6000

7000

8000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

QoS 2 and clean session False
Partition configuration

Message rate (msg/s) Command topic
count

Throughput per topic
(msg/s)

Expected delivered
throughput per

subscriber (msg/s)
280 4000 0,07 0,07

0,07 msg/s per subscriber

37

Figure 36: QoS 2, multi-subscriber, centralised broker, 0,07 msg/s per subscriber

8000 16000 24000 32000 40000 48000
0

500

1000

1500

2000

2500

3000

3500

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU (% max = 100)

Subscribers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
PU

 (%
)

6.3 Clustered broker

The multi-subscriber scenario is tested with a clustered broker composed of two servers S0 and S1
as illustrated by figure 37. Subscribers (8000 per partition) and publishers (one per partition) are
equally load-balanced across the two servers S0 and S1. Figure 37 only shows one publisher
connected to S0.

The subscriptions are replicated on both servers S0 and S1. If a publisher connected to S0 sends
a message to a topic having a subscriber connected to S1, then the message is forwarded to S1.

38

Figure 37: Multi-subscriber, clustered broker

MQTT

MQTT

MQTT

MQTT

Publisher

Multiple
subscribers

S0 S1

System System

Forward

Multiple
subscribers

System/Subsystem0/
Device/Command

System/Subsystem1/
Device/Command

System/Subsystem0/Device/Command
System/Subsystem1/Device/Command

Replicated
subscriptions

QoS 0
Partition configuration

Message rate (msg/s) Command topic
count

Throughput per topic
(msg/s)

Expected delivered
throughput per

subscriber (msg/s)
800 8000 0,1 0,1

4800 8000 0,6 0,6

0,1 msg/s per subscriber

0,6 msg/s per subscriber

39

Figure 39: QoS 0, multi-subscriber, clustered broker, 0,6 msg/s per subscriber

16000 32000 48000 64000 80000 96000
0

10000

20000

30000

40000

50000

60000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

Figure 38: QoS 0, multi-subscriber, clustered broker, 0,1 msg/s per subscriber

16000 32000 48000 64000 80000 96000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

QoS 1 and clean session False
Partition configuration

Message rate (msg/s) Command topic
count

Throughput per topic
(msg/s)

Expected delivered
throughput per

subscriber (msg/s)
800 8000 0,1 0,1

1200 8000 0,15 0,15

0,1 msg/s per subscriber

0,15 msg/s per subscriber

40

Figure 40: QoS 1, multi-subscriber, clustered broker, 0,1 msg/s per subscriber

16000 32000 48000 64000 80000 96000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

Figure 41: QoS 1, multi-subscriber, clustered broker, 0,15 msg/s per subscriber

16000 32000 48000 64000 80000 96000
0

2000

4000

6000

8000

10000

12000

14000

16000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

QoS 2 and clean session False
Partition configuration

Message rate (msg/s) Command topic
count

Throughput per topic
(msg/s)

Expected delivered
throughput per

subscriber (msg/s)
320 8000 0,04 0,04

0,04 msg/s per subscriber

41

Figure 42: QoS 2, multi-subscriber, clustered broker, 0,04 msg/s per subscriber

16000 32000 48000 64000 80000 96000
0

500

1000

1500

2000

2500

3000

3500

4000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
PU

 (%
)

6.4 Distributed broker

The multi-subscriber scenario is tested with a distributed broker composed of two servers S0 and
S1 as illustrated by figure 43. Subscribers (8000 per partition) and publishers (one per partition)
are equally load-balanced across the two servers S0 and S1. Figure 43 only shows one root topic
“System” and one publisher connected to S0.

42

Figure 43: Multi-subscriber, distributed broker

MQTT

MQTT

Subsystem0

System

Publisher

MQTT

Multiple
subscribers

S0 S1

Subsystem1

Multiple
subscribers

System/Subsystem0/
Device/Command

System/Subsystem0/Device/Command
System/Subsystem1/Device/Command

System/Subsystem1/
Device/Command

MQTT

QoS 0
Partition configuration

Message rate (msg/s) Command topic
count

Throughput per topic
(msg/s)

Expected delivered
throughput per

subscriber (msg/s)
800 8000 0,1 0,1

4800 8000 0,6 0,1

0,1 msg/s per subscriber

0,6 msg/s per subscriber

43

Figure 44: QoS 0, multi-subscriber, distributed broker, 0,1 msg/s per subscriber

Figure 45: QoS 0, multi-subscriber, distributed broker, 0,6 msg/s per subscriber

16000 32000 48000 64000 80000 96000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Subscribers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

16000 32000 48000 64000 80000 96000
0

10000

20000

30000

40000

50000

60000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

QoS 1 and clean session False
Partition configuration

Message rate (msg/s) Command topic
count

Throughput per topic
(msg/s)

Expected delivered
throughput per

subscriber (msg/s)
800 8000 0,1 0,1

1200 8000 0,15 0,15

0,1 msg/s per subscriber

0,15 msg/s per subscriber

44

Figure 46: QoS 1, multi-subscriber, distributed broker, 0,1 msg/s per subscriber

Figure 47: QoS 1, multi-subscriber, distributed broker, 0,15 msg/s per subscriber

16000 32000 48000 64000 80000 96000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

16000 32000 48000 64000 80000 96000
0

2000

4000

6000

8000

10000

12000

14000

16000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU Avg[S0,S1] (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

QoS 2 and clean session False
Partition configuration

Message rate (msg/s) Command topic
count

Throughput per topic
(msg/s)

Expected delivered
throughput per

subscriber (msg/s)
320 8000 0,04 0,04

0,04 msg/s per subscriber

45

Figure 48: QoS 2, multi-subscriber, distributed broker, 0,04 msg/s per subscriber

16000 32000 48000 64000 80000 96000
0

500

1000

1500

2000

2500

3000

3500

4000

0

10

20

30

40

50

60

70

80

90

100
Delivered throughput (msg/s)
CPU (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
PU

 (%
)

6.5 Conclusion

The scenario called “multi-subscriber” simulates a large number of devices, for example smart
meters, controlled by a central system. The devices are the subscribers and the central system is
the publisher. Using a single server and constrained physical resources (2 cores, 4 GB RAM and
SATA disk) JoramMQ can scale to 48.000 subscribers, each subscriber consuming:

• 0,6 message per second at QoS 0

• 0,15 message per second at QoS 1

• 0,07 message per second at QoS 2

With a clustered broker topology using two servers, JoramMQ scales to twice the number of
subscribers, i.e. 96.000, consuming at the same rate as with the centralised broker, except at QoS
2 where the rate has to be lowered to 0,04 msg/s.

The distributed broker topology approximately gives the same results as the clustered topology.

46

7 Multi-subscription scenario

7.1 Overview

The scenario called “multi-subscription” simulates a large number of client applications, each
subscribed to many MQTT topics. The multi-subscription scenario is different than the multi-
subscriber scenario. In the multi-subscriber scenario (see section 6), each subscriber represents a
device that has registered to only one command. In the multi-subscription scenario, each
subscriber represents an application that has registered to many telemetry parameters.

This situation could happen for example in a payload operations centre publishing telemetry
parameters for a given space mission to remote observers such as scientists remotely located. The
observers would be MQTT subscribers registered to topics representing the telemetry parameters.

The multi-subscription scenario launches 1200 subscribers in batches of 100. There are less
subscribers than in the multi-subscriber scenario but the delivered message throughput per
subscriber is higher.

Two tests are done. The first one checks that the broker scales with the number of subscribers.
The second one adds a slow consumer and checks if the broker is affected or not by this
consumer. JoramMQ handles a slow consumer according to the QoS level specified by the
message delivery:

• at QoS 1 and 2, messages are queued and swapped9 to disk in case of overflow;

• at QoS 0, if the messages are queued, then they are swapped to disk in case of overflow;

• at QoS 0, if the messages are not queued, then the messages that cannot be delivered
because of the overflow are dropped; in this particular case, the test accepts that some
messages are lost.

Only the centralised broker is tested.

9 A message is swapped only once, even if several copies of the message are delivered to different subscriptions. If a
subscription is durable then the message has already been persisted and therefore does not need to be swapped. It is
just removed from the memory.

47

7.2 Centralised broker

In the same way as in the multi-subscriber scenario, topics are partitioned in several hierarchies. In
the payload operations centre use case, a partition represents the telemetry parameters published
by a spacecraft for a given mission.

Each partition is structured as follows:

• 1 root topic

• 10 subsystem topics

• 100 device topics per subsystem

• 10 parameter topics per device

There are one publisher and 100 subscribers per partition.

The publisher sends messages to the 10.000 parameter topics at a steady rate.

Each subscriber listens to the parameters of 100 device topics using the wildcard '#'. As there are
10 parameters per device, each subscriber listens to 1000 topics “Parameter”.

Each device topic has 10 subscribers. So every published message is copied and delivered 10
times.

48

Figure 49: Multi-subscription, centralised broker

Publisher

MQTT

MQTT

Multiple
Subscribers

System/Subsystem/Device/Parameter

 System

System/Subsystem/Device0/#
...
System/Subsystem/DeviceN/#

Payload operations centre

QoS 0, not queued
Partition configuration

Message rate
(msg/s)

Topic
count

Throughput per
topic (msg/s)

Topics per
subscriber

Expected delivered
throughput per

subscriber (msg/s)
1500 10.000 0,15 1000 150

150 msg/s per subscriber

150 msg/s per subscriber, 1 slow consumer

49

Figure 50: QoS 0 (not queued), multi-topic subscription, 150 msg/s per subscriber

200 400 600 800 1000 1200
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0

10

20

30

40

50

60

70

80

90

100
Delivered throughput (msg/s)
CPU (% max = 100)

Subscribers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

Figure 51: QoS 0 (not queued), multi-topic subscription, 150 msg/s per subscriber, 1 slow
consumer

200 400 600 800 1000 1200
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0

10

20

30

40

50

60

70

80

90

100
Delivered throughput (msg/s)
CPU (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

QoS 0, queued
Partition configuration

Message rate
(msg/s)

Topic
count

Throughput per
topic (msg/s)

Topics per
subscriber

Expected delivered
throughput per

subscriber (msg/s)
1500 10.000 0,15 1000 150

150 msg/s per subscriber

150 msg/s per subscriber, 1 slow consumer

50

Figure 52: QoS 0 (queued), multi-topic subscription, 150 msg/s per subscriber

Figure 53: QoS 0 (queued), multi-topic subscription, 150 msg/s per subscriber, 1 slow consumer

200 400 600 800 1000 1200
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0

10

20

30

40

50

60

70

80

90

100
Delivered throughput (msg/s)
CPU (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

200 400 600 800 1000 1200
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0

10

20

30

40

50

60

70

80

90

100
Delivered throughput (msg/s)
CPU (% max = 100)

Subscribers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

QoS 1 and clean session False
Partition configuration

Message rate
(msg/s)

Topic
count

Throughput per
topic (msg/s)

Topics per
subscriber

Expected delivered
throughput per

subscriber (msg/s)
400 10.000 0,04 1000 40

40 msg/s per subscriber

40 msg/s per subscriber, 1 slow consumer

51

Figure 54: QoS 1, multi-topic subscription, 40 msg/s per subscriber

200 400 600 800 1000 1200
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU (% max = 100)

Subscribers

D
el

ive
re

d
th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

Figure 55: QoS 1, multi-topic subscription, 40 msg/s per subscriber, 1 slow consumer

200 400 600 800 1000 1200
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
PU

 (%
)

QoS 2 and clean session False
Partition configuration

Message rate
(msg/s)

Topic
count

Throughput per
topic (msg/s)

Topics per
subscriber

Expected delivered
throughput per

subscriber (msg/s)
100 10.000 0,01 1000 10

10 msg/s per subscriber

10 msg/s per subscriber, 1 slow consumer

52

Figure 56: QoS 2, multi-topic subscription, 10 msg/s per subscriber

200 400 600 800 1000 1200
0

2000

4000

6000

8000

10000

12000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

Figure 57: QoS 2, multi-topic subscription, 10 msg/s per subscriber, 1 slow consumer

200 400 600 800 1000 1200
0

2000

4000

6000

8000

10000

12000

0

10

20

30

40

50

60

70

80

90

100

Delivered throughput (msg/s)
CPU (% max = 100)

Subscribers

D
el

iv
er

ed
 th

ro
ug

hp
ut

 (m
sg

/s
)

C
P

U
 (%

)

7.3 Conclusion

The scenario called “multi-subscription” simulates a large number of client applications, each
subscribed to many MQTT topics.

The tests show that the broker scales to 1200 client applications while delivering:

• 180.000 messages per second at QoS 0, not queued

• 120.000 messages per second at QoS 0, queued

• 48.000 messages per second at QoS 1

• 12.000 messages per second at QoS 2

The tests also show that adding a slow consumer does not affect the broker performance. The
same throughputs are reached with approximately the same CPU level.

53

8 Conclusion
Using a single server and constrained physical resources (2 cores, 4 GB RAM and SATA disk)
JoramMQ is able to handle 48.000 MQTT clients, each client producing or consuming messages at
different rates depending on the QoS levels10.

The nominal message rate equal to 0,1 message per second per MQTT client has been chosen as
a typical message rate for IoT applications, e.g. a smart metering use case where clients are
devices producing telemetry data (sensors) and consuming control commands (actuators).

At QoS levels 0 and 1, in the context of the tests, the nominal rate is very low and can be
increased depending on the scenario. For example, at QoS 0, the multi-publisher scenario allows
to reach 1 message per second per publisher, which is ten times the nominal rate. The maximum
rate has not been reached, except at QoS level 2.

The same message rates have been handled with twice more clients11, i.e. 96.000 thanks to the
clustered and distributed topologies provided by JoramMQ.

The largest message throughputs that have been reached in these tests are:

• 96.000 messages per second at QoS 0

• 24.000 messages per second at QoS 1

• 6.700 messages per second at QoS 2

Finally, a different use case has been tested where MQTT clients are applications subscribed to
real-time telemetry data. Each subscriber has registered to multiple topics. The number of
subscribers is limited to 1200. In this situation, JoramMQ can deliver the following message
throughputs to all the subscribers:

• 180.000 messages per second at QoS 0

• 48.000 messages per second at QoS 1

• 12.000 messages per second at QoS 2

10 QoS levels 1 and 2 have been tested by ensuring that messages are persisted and that a sync to disk is performed
before acknowledgements are returned (PUBACK, PUBREC, PUBREL and PUBCOMP).

11 Except the multi-subscriber scenario at QoS level 2 which required to lower the rate by 40%, from 0,07 to 0,04
message per second.

54

	1 Overview
	2 Publish/Suscribe and the broker model
	2.1 Benefits of the broker model
	Space decoupling
	Time decoupling
	Reliability

	2.2 Drawbacks
	Higher message transmission latency
	Higher network bandwidth consumed
	Centralised architecture

	3 JoramMQ distributed broker
	3.1 Overview
	3.2 Centralised broker
	3.3 Clustered broker
	3.4 Distributed broker
	3.5 Clustered and distributed broker

	4 MQTT performance test bench
	4.1 Overview
	4.2 Centralised broker testing
	4.3 Clustered broker testing
	4.4 Distributed broker testing

	5 Multi-publisher scenario
	5.1 Overview
	5.2 Centralised broker
	QoS 0
	0,1 msg/s per publisher
	1 msg/s per publisher

	QoS 1 and clean session False
	0,1 msg/s per publisher
	0,25 msg/s per publisher

	QoS 2 and clean session False
	0,07 msg/s per publisher

	5.3 Clustered broker
	QoS 0
	0,1 msg/s per publisher
	1 msg/s per publisher

	QoS 1 and clean session False
	0,1 msg/s per publisher
	0,25 msg/s per publisher

	QoS 2 and clean session False
	0,07 msg/s per publisher

	5.4 Distributed broker
	QoS 0
	0,1 msg/s per publisher
	1 msg/s per publisher

	QoS 1 and clean session False
	0,1 msg/s per publisher
	0,25 msg/s per publisher

	QoS 2 and clean session False
	0,07 msg/s per publisher

	5.5 Conclusion

	6 Multi-subscriber scenario
	6.1 Overview
	6.2 Centralised broker
	QoS 0
	0,1 msg/s per subscriber
	0,6 msg/s per subscriber

	QoS 1 and clean session False
	0,1 msg/s per subscriber
	0,15 msg/s per subscriber

	QoS 2 and clean session False
	0,07 msg/s per subscriber

	6.3 Clustered broker
	QoS 0
	0,1 msg/s per subscriber
	0,6 msg/s per subscriber

	QoS 1 and clean session False
	0,1 msg/s per subscriber
	0,15 msg/s per subscriber

	QoS 2 and clean session False
	0,04 msg/s per subscriber

	6.4 Distributed broker
	QoS 0
	0,1 msg/s per subscriber
	0,6 msg/s per subscriber

	QoS 1 and clean session False
	0,1 msg/s per subscriber
	0,15 msg/s per subscriber

	QoS 2 and clean session False
	0,04 msg/s per subscriber

	6.5 Conclusion

	7 Multi-subscription scenario
	7.1 Overview
	7.2 Centralised broker
	QoS 0, not queued
	150 msg/s per subscriber
	150 msg/s per subscriber, 1 slow consumer

	QoS 0, queued
	150 msg/s per subscriber
	150 msg/s per subscriber, 1 slow consumer

	QoS 1 and clean session False
	40 msg/s per subscriber
	40 msg/s per subscriber, 1 slow consumer

	QoS 2 and clean session False
	10 msg/s per subscriber
	10 msg/s per subscriber, 1 slow consumer

	7.3 Conclusion

	8 Conclusion

